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Abstract

A Bayesian seasonal adjustment procedure BAYSEA leads to a regression-type procedure which
allows effective use of prior information of each particular time series. The decision on the selec-
tion of the basic model is realized by minimizing an objectively defined criterion. Numerical
results show the relative advantage of the BAYSEA procedure over the X~11 procedure.
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1. INTRODUCTION

The Census method of seasonal adjustment, particularly the
X~—11 variant of the method II, made a significant contribu-
tion to the practice of economic data analysis. The method is
a typical example of how an appropriate accumulation of
human experiences can lead to the development of an
extremely useful data-analytic procedure. The construction of
the procedure has often been questioned because of its lack of
the basic statistical model. Nevertheless, the widely spread
use of the X—11 constitutes a proof that it is a good practical
procedure for the seasonal adjustment of economic data.

Since the social impact of the seasonal adjustment of an
economic time series is often quite significant, it is natural
that the improvement of the technique has been continuously
contemplated. A useful reference on this subject is the paper
by Kallek (1978) who discusses the general objectives and
necessary improvements of the technique of seasonal adjust-
ment. Also useful is the paper by Shiskin and Plewes (1978)
who discuss the seasonal adjustment of the U.S. unemploy-
ment rate. These two papers are very informative as they
explain the problems of seasonal adjustment based on the
experiences of the authors. Of particular interest is the candid
description of the purpose of seasonal adjustment by Kallek
(1978, p. 15) who states that ‘“‘one attempts to remove as
much of the fluctuation which obscures the trend-cycle com-
ponent of the series.”” We also notice that the important com-
mon observations of these authors are that a procedure must
be equipped with various options which allow the incorpora-
tion of prior information related to a time series and that deci-
sions on the selection of particular options must be based on
objectively defined criteria.

In 1980, Hirotugu Akaike (1980a) proposed the use of a
Bayesian model for seasonal adjustment and demonstrated its
feasibility by numerical examples. The necessary computa-
tional procedure was then published in a computer program
called BAYSEA (a Bayesian Seasonal Adjustment Program;
Akaike and Ishiguro 1980a). In contrast to the Census method
which is based on the moving average technique, this
approach leads to a regression technique with a very simple
structure and easily allows the incorporation of various
options in the form of an increased number of independent
variables. Also, since it is based on an explicitly defined sta-
tistical model, a very-useful objective criterion for the selec-
tion of the best model is available. Thus, the procedure satis-
fies the two important requirements mentioned above, the
availability of options and the objectivity of decision criteria,
and it is only whether it really produces good adjustments of
economic time series that determines the viability of this new
procedure. Since there is no absolute criterion yet available
for the evaluation of a seasonal adjustment procedure, the
most natural starting point for the evaluation of this procedure
will be the comparison of its performance with that of the best
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established, the X—11 procedure. This comparison is the sub-
ject of this paper.

The X—~11 ARIMA developed by Dagum (1978) differs
from the original X—11 as it extrapolates the original series by
the ARIMA modeling. However, since the difference between
the outputs of these two procedures is usually negligibly small
compared with the difference between those of the original
X~—11 and BAYS}EA, we will restrict our attention to the
comparison with the original X—11. Only the statistics of the
amount of revisions by the X—11 ARIMA when additional
years of observations are added will be shown in section 5.

2. BASIC STRUCTURE OF THE BAYSEA
PROCEDURE

As the basic model of the time series for seasonal adjust-
ment we assume the additive structure

y@y=T, +S§; +1

where y (i) denotes the observation at time i and T;, S; and ;
denote the trend, seasonal and irregular component, respec-
tively. For simplicity of explanation, the series is considered
to be of monthly observations.

What we typically expect of the two systematic components
are that, at least locally, the trend component T; will show a
smooth behavior and that the yearly pattern of the seasonal
component §; will be stable. This expectation is formally
represented by asking

3T = 2T + T, + (S; — Si-1n)
+ ZZ(S,- + Si—l + ...+ S,‘._”)Z]

to be small. The last term within the brackets is added to keep
the 12-month sum of the seasonal variations close to zero.
Here s and z are properly chosen constants. We also expect
that the systematic part 7; + S; will not deviate significantly
from the original observation y (i ). This suggests the minimi-
zation of

@) - T — §7

The simultaneous minimization of the above two quantities
leads to the minimization of

(@) =T, = S + d? s¥T; — 2T,y + T; »)*
+ (S =S 2 HS 4S8 .+ S; -4}

where d is a properly chosen constant.

If we denote by y the vector of the observations (y (V),
YN —1),...,y()) and by c the vector of the seasonal
and trend components (Sy, Sy—1, . - -, Sy, Ty, Tv—1> - - - »
T;)" where (') denotes transpose, the above quantity can be
represented by

L) =lly —=xcI? +llpc - eyl

SECTION 1
where llx | denotes the Euclidean norm (x,2 + x22 + ...+
x)Y? of avectorx = (x,X», . . ., x). The matrices X and
D are given by

X = [IN IN] and

Dy o
D =d - ZD12 0
0 sDxn

where Iy denotes an N X N identity matrix and

1 13 ' N
1 0 -1
1 0 -1 0
0
Dy =
1 0 |
0
1 0
1
1 12 N
1 1 c 1
1 1 1
Dy =
1 1 1
0
1 1
1
1 N
1 -2 1
1 -2 1 0
Dy = )
0 1 2 1
1 -2
1

Obviously, we may consider the use of higher or lower order
differences of the trend and seasonal components than those
used in the above definition. The necessary modification of D
is straightforward. The vector ¢ represents the effect of the
past trend and seasonal components T, T_;, 7, and Sy,
S_1, - - ., S_11. The best choice ¢, of ¢ is then defined as
that which minimizes the sum of squares L (¢ ).

Since we have L (¢) = “y* — X “2, where

y X
DCO D
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the solution ¢, to the above problem can easily be obtained by
any standard procedure of least squares. This completes the
description of the basic structure of BAYSEA. One remark-
able characteristic of the procedure is that it is not bothered by
the problem of extrapolation at the end of the time series.

3. THE BAYESIAN MODELING AND THE
SELECTION CRITERION

Although the basic structure is simple, BAYSEA contains
several parameters which must be specified before it becomes
operational. We solve this problem as a problem of statistical
model selection. For this purpose, first we note the simple fact
that the minimization of L (¢) is identical to the maximization
of '

exp [-L(cy2v)] =exp [~y — xellZ@v)
exp [—Hc = c0||2/(2v)]
where v is a positive constant. This shows that the solution c.
of the least squares problem is the mode or the mean of the

posterior destribution of the Bayesian model defined with the
data distribution

folve) =2mv) V2 exp [-lly — Xe 17w

and the prior distribution

plv.D,cg) = @mv)™2IDp'D V2
exp [—“D (c — co)||2/(2v)]

The relative goodness of a Bayesian model can be meas-
ured by the likelihood of the model defined by

M@,D,co) = f fo lv,c)p (c lv,D,co) dc

By a simple calculation we get

M@,D,co = @m) V2R IV2x'x +RI2
exp [—L(c.)/(2v)]
where R = D'D. As the estimate of the variance of the irregu-
lar component I;, we adopt the value of v that maximizes the
likelihood. This is given by v = (I/N) L(c,). For compari-
son of models defined with different D’s, we adopt
ABIC = (—2) In M (vo,D,cq)
=Nlnvgtln Ixx +R|l—1n IRI+ N const.

where 1n denotes na‘tual logarithm. A model with a smaller
value of ABIC is considered to be a better model. Here ABIC
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stands for a Bayesian information criterion and is so called
due to its similarity to the criterion AIC developed for the
comparison of statistical models with parameters determined
by the method of maximum likelihood (Akaike 1980a).

4. IMPLEMENTATION OF THE BAYSEA
PROCEDURE

In the present version of BAYSEA, the optimum choice of
the scaling factor 4. of the matrix D is realized by a discrete
search over the interval (1.0, 20.0) for the minimum of ABIC.
The lower bound 1.0 was chosen from the consideration that
for d less than 1.0 much of the irregular movement of the
series will be absorbed into the trend and seasonal com-
ponents. The choice of the upper bound 20.0 is based on the
consideration that the signal to noise ratio 1/20, in terms of
the amplitude ratio, is a limit for visual detection of the signal
when it is buried in the noise. The parameter z which controls
the average of the seasonal component is determined by the
relation

2 =p V2l

where p denotes the length of the fundamental period, which
is equal to 12 for monthly data, s is the scaling factor of the
matrix D 3, which controls the smoothness of the trend com-
ponent. Thus, the basic BAYSEA procedure is defined by the
following three parameters:

ORDER = order of differencing of 7;
SORDER = order of differencing of S;
RIGID = l/s

The naming of RIGID is due to the fact that the increase of the
value 1/ increases the rigidity of the seasonal pattern.

By the computer program BAYSEA, the basic procedure is
applied successively to blocks of data of length SPAN X
PERIOD, where PERIOD denotes the value of p above
defined. SPAN is set equal to 4 in our study. This choice is
based on the observation that in the papers hitherto published,
it is often mentioned that at the time when observations of
additional 3 years are added, the result of the seasonal adjust-
ment must be considered to be final. The prior mean cg is
obtained as the mean of the vector ¢ conditional on the past
values of the trend and seasonal component. At the beginning
of the computation, the basic procedure is applied to the first
block of data of length (2 X SPAN — 1) X PERIOD and the
necessary past trend and seasonal components are determined
by an approximate method of maximum likelihood. In the
actual implementation of BAYSEA, the estimates of the trend
and seasonal components before the present block of data are
fixed and treated as the true values to define cg. For the
details of the computation of cg, readers are referred to
Akaike (1980b). The block of data for analysis is successively
shifted by the number of data points equal to SHIFT X
PERIOD. In the present study, SHIFT is set equal to 1.
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5. NUMERICAL RESULTS

The search for the optimal model by BAYSEA was limited
to the following five models defined by the combinations of
the parameters; (ORDER, SORDER, RIGID) = (1, 1, 1.0),
2, 1,1.0), (2, 1,0.5), (2, 2, 1.0) and (2, 2, 0.25). The pro-
cedures X—11 and BAYSEA were applied to the 13 sets of
economic data provided by the Bureau of the Census. Both
procedures have options for the correction of extreme values
or outliers. However, since these options will be effective
only when the basic procedures work satisfactorily to give
good initial estimates of the irregular component, we limited
our attention mainly to the comparison of the procedures
without these options. The additive version of X—11 was
applied to tables 1-3 and the multiplicative version to the
tables 4-13. Correspondingly, the BAYSEA was applied to
tables 4-14 after natural log transformation. The numerical
results obtained by the X—11 for tables 4-14 were all
transformed into natural logarithms for comparison. The
choice of additive or log additive model by the BAYSEA can
be based on ABIC with the necessary modification of the
likelihood for the log transformation.

Throughout the rest of this paper the following abbreviated
notations are used:

X~-11 OTL: X—11 with standard outlier
correction

X—11 NOTL: X~—11 without outlier correc-
tion

X-11 ARIMA NOTL: X—11 ARIMA with 1 year of
forecasts and without outlier
correction

BAYSEA with ORDER=m,
SORDER=# and RIGID=r
Sum of squares of the amount
of revisions of the trend, sea-
sonal and irregular com-
ponent, respectively, due to
the inclusion of i additional
years of observations.

BAYSE(m,n,r):

ST,', SS,', SI,'Z

The computation was performed by starting with the first 7-
years’ data as the initial set and then adding the set of the fol-
lowing complete 1-year data successively.

In the following, we will describe the numerical rjcsults.1
Graphical results were obtained by the X—11 and BAYSEA
without outlier correction options and they are included at the
end of the paper. The Bayesian models adopted for BAYSEA
were selected by minimizing the criterion AVABIC, the aver-
age of ABIC of each data block over the total span of data.

1o produce the real values, numbers in each table should be multiplied
by the number. within the parentheses located directly below the table.

SECTION 1

' Table 1. AGRICULTURAL EMPLOYMENT, MEN, 20 YEARS

OLD AND OLDER (BLSAGEMEN)

ST1 ST3 SS1 SS3 Si1 Si3

X—11 OTL 0.84 147 119 233 1.10 085
X—11NOTL 72124 118 208 .78 .79
X—11 ARIMANOTL .63 97 0 90 143 40 53
BAYSEA(1, 1, 1.0) 59 75 80 100 20 .19

(x 10%

Comments: Figure 1 shows that the results obtained by X—11
NOTL and the BAYSEA are very close. The behavior of the
trend by the BAYSEA looks slightly more irregular than that
by X—11 NOTL.. The revisions are smaller for the BAYSEA
than for the X—11 procedures. This is a typical result by
BAYSEA (1, 1, 1.0).

Table 2. UNEMPLOYED WOMEN, 16 TO 19 YEARS OLD
(CPS DATA, BLSUEW 16-19)

STt ST3 SSI SS3 SIi  SI3

X~ OTL 0.17 032 047 1.01 054
X—11 NOTL 36 34 65 9 .74
X-11ARIMANOTL 45 44 68 96 .75
BAYSEA (2, 2, 0.25) 6475 106 1.03 1.22

_ﬂ__
154
5BV

x10%

Comments: Figure 2 shows that apparently the final estimates
of the seasonal component by both procedures are very close.
This makes the smaller revision of the trend by the X—11,
represented by the lower valtues of ST1 and ST3, rather attrac-

-tive. However, the trend of X~11 NOTL is very wavy and

suggests the necessity of further analysis. This will become
the main point of the present comparative study.

Table 3. ALL EMPLOYEES IN FOOD INDUSTRIES
(ESTABLISHMENT DATA, BLSALLFOOD)

ST1 ST3 SS1 SS3  SII  SI3

X—-110TL 0.85 094 032 085 049 071
X-11 NOTL 76 1.03 50 103 36 .47
X-11ARIMANOTL 106 1.54 .80 1.14 .39 .66
BAYSEA (2, 1, 1.0) 25 4 21 29 36 .56

(x10%

Comments: Figure 3 shows that apparently the BAYSEA is
producing a result similar to that by X—11 NOTL. However,
BAYSEA is producing a more stable seasonal and the low
values of ST3 and SS3 make the procedure very attractive.
This is a typical result by BAYSEA (2, 2, 1.0).
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Table 4. DEPOSIT COMPONENT OF M—-1A MONEY

SUPPLY (DEMANDEPOSIT)
ST1 ST3 SSt 883 SI SI3
X— OTL 120 1.06 099 242 104 1.70
X—11 NOTL 83 .95 93 170 30 71

X—11 ARIMANOTL 8 93 108 158 139 .68
BAYSEA (2,2, 1.0) 8 74 99 128 109 1.02
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Table 7. WHOLESALE INVENTORIES OF GROCERY
STORES (WIGROCERY)
ST1 ST3 SS1 SS3 Sl SI3
X-11 OTL 031 031 0.5 024 021 023
X~11 NOTL 32029 19 34 25 31

X—-11 ARIMANOTL 40 39 29 40 22 32
BAYSEA (2, 1, 1.0) A5 14 06 07 15 19

(x10™)

Comments: The magnitudes of the revisions by the
BAYSEA are similar to those by the X—11 procedures. This
is a typical result by BAYSEA (2, 2, 1,0). The parameter
SORDER = 2 was required to follow the moving seasonal-
ity. As can be seen from figure 4, the results by the two
procedures are very close. Although invisible in the figure,
the trend of the BAYSEA is smoother than that of X—11
NOTL. Note that the results of figures 4-9 are given in
terms of natural logarithms.

Table 5. CURRENCY COMPONENT OF M—1A MONEY
SUPPLY (CURRENCYMI1A)

STt ST3 SS1 SS3 S S13

X-11 OTL 0.16 0.16 020 029 0.18 031
X~11 NOTL 41 33 21 16 57 .63
X-11 ARIMANOTL 38 29 .18 .17 57 .63
BAYSEA (2, 1, 1,0) A1 35 .03 06 .16 .53

(x107%)-

Comments: The data have a very smooth trend and constant
seasonality. The revision of the seasonal component by the
BAYSEA is very small. This is a characteristic of BAYSEA
(2, 1, 1.0). The results by X—11 NOTL and the BAYSEA
are so close that ther is no point in reproducing them in the
form of a figure. This makes the low vallues of the revi-
sions of the BAYSEA rather attractive. There was some in-
dication of a trading-day effect.

Table 6. RETAIL SALES OF WOMEN’S APPAREL

(RSWOMEN)
ST1 ST3 SS1 SS3 SI1 SI3
X-11 OTL 023 053 052 107 0.63 0.87
X—11 NOTL A5 .18 45 90 .39 .59

X~11 ARIMANOTL. .18 .19 .52 87 45 .66
BAYSEA (2,2,0.25) 64 69 47 96 .76 124

(x1072)

Comments: The revisions of the BAYSEA estimates are
comparable to or larger than those of the X—11 estimates.
This is a typical result by BAYSEA (2, 2, 0.25). The trend
of the BAYSEA is much smoother than that of X—11
NOTL and the comments on table 2 also apply to this ex-
ample.

(x107?)

Comments: The revisions of the BAYSEA estimates are
very small. As we mentioned in our comments on table 5
this is a characteristic of the model BAYSEA (2, 1, 1.0).
The results of X—11 NOTL and the BAYSEA are close.

Table 8. RETAIL SALES OF AUTOMOTIVE DEALERS
(RAUTODLRS)

STl ST3 SS1 SS3  SII SI3

X-11 OTL 1.80 267 '1.15 237 172 374
X~-11 NOTL 91 1.13 125 218 .88 1.37
X~-11 ARIMANOTL .64 .99 1.4 213 75 1.26
BAYSEA (2,2,1.00 1.04 158 1.01 .92 177 270

(x107%)

Comments: As we noted in our comments on tables 2, 4,
and 6, the relatively large revisions of the trend and irregu-
lar of the BAYSEA are due to the choice ORDER =
SORDER = 2. Figure 5 shows that the BAYSEA is produc-
ing a much smoother trend and more stable seasonal than
X~11 NOTL. There was some indication of a trading-day
effect.

Table 9. VALUES OF SHIPMENTS, BLAST FURNACE AND
STEEL MILLS (INS11VS)

ST1 ST3 SS1 SS3 Sl S13

X~-11 OTL 0.80 1.03 045 083 047 0.62
X—11 NOTL 71 97 8 131 58 70
X-11ARIMANOTL .70 96 .85 131 58 .70
BAYSEA (2,1,0.5 1.19 205 .64 .8 1.62 278

(x107Y

Comments: This is a series with typical irregularities due to
strikes. Figure 6 shows that the trend of the BAYSEA is
rather insensitive to the strikes in the years 1959, 1962,
1968, and 1971. The seasonal component of the BAYSEA
is more stable than that of X—11 NOTL. The irregular com-
ponent of the BAYSEA is more stable than that of X—11
NOTL. THe irregilar component of the BAYSEA shows
the effect of strikes more clearly than that of X—11 NOTL.
This is an example which shows that small values of revi-
sions of the trend and irregular do not necessarily mean that
the procedure is performing properly.



22

Table 10. VALUE OF UNFILLED ORDERS, RADIO AND TV

(INS36U0)
STI ST3 SS1 SS3 SI1 SI3
X—-11 OTL 283 3.16 072 324 09 288
X—11 NOTL 42 80 .69 158 48 .80

X~-11 ARIMANOTL 47 79 69 150 .52 .84
BAYSEA (2, 2, 1.Q3 S57 .19 75 85 1.08 1.35

x107h

Comments: The relatively large revisions of the BAYSEA
estimates are due to thc choice ORDER = SORDER = 2.
The general impression of the difference between the results
by X—11 NOTL and the BAYSEA is similar to that given
by figure 5 of table 8.

Table 11. VALUE OF SHIPMENTS, BEVERAGES (INS62VS)

ST1 ST3 SS1 SS3  SI1  SI3

X-11 OTL 127 188 124 266 1.68 2.61
X—-11 NOTL 144 1.87 157 277 147 198
X—11 ARIMANOTL 154 190 158 259 145 1.83
BAYSEA (2, 2,0.25) 2.01 196 254 247 346 3.31

(x107)

Comments: This is another example which typically shows
the relatively large revisions of estimates by BAYSEA (2,
2, 0.25). However, figure 7 shows that the trend produced
by X—11 NOTL displays very erratic fluctuations. The
power spectra given in figure 8 whos that by use of X—11
NOTL, too much of the power of the irregular component
around the frequency one cycle/year is eliminated and allo-
cated to the trend component. The spectra were obtained by
fitting. 30th order AR model to the data.

Table 12. HOUSING STARTS, SOUTH, SINGLE-FAMILY
DWELLINGS (CON-HSS1F)

ST1 ST3 SS1 SS3  SI1 SI3

X—-11 OTL 0.19 044 050 088 042 0.63
X-11 NOTL 25 A8 52 99 42 .61
X-11 ARIMANOTL 28 51 51 .97 .41 .59
BAYSEA (2, 2, 1.0) 29 41 28 34 42 .60

(x107h

Comments: The general impression of the differences of the
results by X—11 NOTL and the BAYSEA is quite similar to
that given by figure 5 of table 8. Thus, the smaller revision
of the seasonal by the BAYSEA makes the procedure attrac-
tive.

SECTION 1

Table 13. HOUSING STARTS, NORTH-CENTRAL,
DWELLINGS OF FIVE OR MORE FAMILIES
(CON-HSNCS)

ST1 ST3 SS1 883 SII  SI3

X-11 OTL 0.17 035 056 129 0.64 144
X—11 NOT1 25 27 46 76 52 2
X-11 ARIMANOTL 25 27 46 76 52 13
BAYSEA (2,2,025) 39 4 49 56 19 92

(x10%

Comments: The choice of the parameters of BAYSEA is
due to the moving seasonality towards the end of the data.
(See fig. 9.) The trend of the BAYSEA is much smoother
than that of X—11 NOTL. However, the trend of the
BAYSEA looks too insensitive to the dip of the level around
the years 1966 and 1967. This means that the present choice
of RIGID = 0.25 is too low for this part of the data. This
problem of structural change of the original time series will
be discussed in more detail in the next section.

6. DISCUSSION

The numerical results given in the preceding section
revealed remarkable similarity of the performance of the
X—-11 and BAYSEA procedures. However, significant
differences were often observed between the trend com-
ponents obtained by the two procedures. QOur general
impression was that X—11 was generating spurious fluctua-
tions of trend. That this is the case is demonstrated by the
following example of the time series of unemployment of
the United States.

Figure 10 shows the results of applying the additive ver-
sion of X—11 with the standard option for outlier correction
and BAYSEA (2, 1, 1.0) with some ad hoc option to be
described shortly to the time series of the number of the
U.S. unemployed, 16 years of age and older, for the years
1972-78. In this example, we see the typical wavy move-
ment observed in the preceding section in the trend pro-
duced by X—11. There is a sharp rise of the level at January
1975. The effect of this abrupt change on the seasonal
adjustment is discussed in great detail by Shiskin and
Plewes (1978). The use of some ad hoc preprocessing to
compensate for the change of the level is suggested by these
authors. By the present Bayesian approach, the abrupt
change suggests an increase of the uncertainty of the vari-
ance of the corresponding prior distribution. The BAYSEA
procedure, which produced the result illustrated in figure
10, was obtained by multiplying the five rows of the matrix
D, which generated the second-order differences 7; — 27T;_;
+ T; , with i centered at January 1975, by the factor 0.05.
The position of the central row and the value of the multi-
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plicative factor were chosen by minimizing ABIC. The
BAYSEA trend thus obtained shows a very smooth decline
during 1977 that is in sharp contrast to the wavy behavior of
the X—11 trend.

By comparing the seasonal components obtained by the
two procedures, we can see that the particular behavior of
the X~11 trend is related to the large amplitude of the
X—11 seasonal. In the first half of each year, the positive
swing of the X—11 seasonal corresponds to the downward
swing of the trend, and in the second half, the negative
swing of the seasonal corresponds to the upward swing of
the trend. This observation shows that a spurious fluctuation
of frequency around one cycle/year may be generated by the
overadjustment of seasonality. Thus, we may conclude that
the wavy pattern often observed in the trend components
obtained by the X—11 procedure is quite probably an indica-
tion of the overadjustment.

Detailed study of this aspect will require a cross-spectrum
analysis between the fluctuations of the trend and the sea-
sonal component. Here, we will only note that the cross-
correlations between the monthly differences of the trend
and the yearly differences of the seasonal were often more
significant, in the examples treated in the preceding section,
for the X—11 than for the BAYSEA procedure. This obser-
vation of the necessity of looking at the trend component
directly rather than the adjusted series, which is obtained by
subtracting the seasonal component from the original series,
is an important result of our present comparative study.

The X—11 and BAYSEA procedures were applied to the
same series of the U.S. unemployment for the years 1967-
1978 and the sums of squares of the revisions of the esti-
mates were obtained as follows:

ST1 ST3 SS1 SS3 Sl SS3

X—11 OTL 6.00 535 217 499 493 445
X~11 NOTL 647 7.83 272 485 329 338
BAYSEA (2,1,1.0) 189 2.02 121 165 060 065
BAYSEA (2,1,1.00' 114 132 060 059 105 1.11

(x10%

With increased prior variances for the trend differences around January
1975.

We can see the drastic reduction of the amount of revi-
sions of the trend and seasonal components by the introduc-
tion of the modification of BAYSEA. The very small values
of the sums of squared revisions and the apparently very
natural behavior of the trend illustrated in figure 10 strongly
indicate the advantage of the modified BAYSEA over the
standard X—11 procedure. The simplicity of the necessary
operation and the clarity of the underlying motive of the
present modification provide a good demonstration of the
versatility of the BAYSEA procedure.

The behavior of the trend obtained by the BAYSEA for
table 13 and illustrated in figure 9 might have given some
impression that the procedure is too insensitive to the dip of
the level of the original data in the years 1966-67. By
inspection, it turned out that BAYSEA (2, 2, 1.0) was pro-
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ducing lower values of C at this part of the data. This
suggests that the time sepfes changed its character from con-
stant to moving seasonality during the period of observation.
The BAYSEA procedure allows the detection of such a
change of character through the comparison of ABIC’s of
various models. By simultaneously running models with dif-
ferent parameters and watching the behavior of ABIC’s, we
can easily identify the present status of the time series.

What is more important is the fact that exp(—0.5ABIC) -
plays the role of the likelihood of a model. Thus, in the
case of table 13, by taking the average of the results of
BAYSEA(2, 2, 0.25) and BAYSEA (2, 2, 1.0) for each
block of data with weights proportional to the
exp(—0.5ABIC)’s, we obtained the result shown in figure
11. The trend is now responding to the dip of the level at
1966-67, yet showing the adaptation to the moving seasonal-
ity towards the end of the data. This result suggests that by
simultaneously running the five models used in this paper
and taking the average of the results with weight propor-
tional to the exp(—0.5ABIC)’s, one can get a very practical
procedure of adaptive seasonal adjustment.

7. CONCLUSION

Options necessary for handling missing observations,
trading-day effects, and other additive inputs are already
developed for BAYSEA (Akaike 1979, Akaike and Ishiguro
1980b, and Ishiguro and Akaike 1980). Decisions on these
options are also based on the objective criterion ABIC. The
numerical results reported in this paper confirm that the
BAYSEA procedure equipped with a set of a fairly small
number of alternative models can produce results that are
apparently often better than those of the X—11 procedure.
The simplicity of the structure, the versatility of options,
and the availability of an objective criterion for making
decisions make the BAYSEA procedure quite an attractive
alternative to the X—11 procedure.
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COMMENTS ON ‘““COMPARATIVE STUDY OF THE X—11 AND BAYSEA
PROCEDURES OF SEASONAL ADJUSTMENT”’ BY H. AKAIKE
AND M. ISHIGURO

Estela Bee Dagum
Statistics Canada

INTRODUCTION

I have read with interest the paper by Akaike and Ishi-
guro, ““Comparative Study of the X~11 and BAYSEA Pro-
cedures of Seasonal Adjustment.”” These authors introduce a
Bayesian seasonal adjustment (BAYSEA) method where the
selection of the optimal model is based on the minimization
of a well-defined objective function. They compare the revi-
sions of the various components as estimated by BAYSEA,
X—11, and X—11 ARIMA for 14 economic time series and
point out the advantages of the former over the two latter.
My comments concentrate primarily on  three important
issues: (1) The basic assumption of BAYSEA, for a method
is optimal in the measure that the series to which it applies
does not depart from its basic assumptions; (2) the serious
limitations of the empirical comparisons which invalidate
the authors conclusions; and (3) the operational state of the
BAYSEA program for use by a statistical agency.

1. BASIC ASSUMPTIONS OF THE BAYSEA METHOD

The Baysea method is based on the minimization of the
following objective function:

{[Yt ~T, - St]2 + dz[SZ(AZTt)Z

1
+ (ApS)* + zz(i.S, —j)2]} ‘ (1.
=0

where A = 1 — B is the ordinary difference operator and
Ap = 1 — B2 is the seasonal difference operator. The
terms which are squared in the first sum are the deviations
of the observations from the estimated components and
those in the second, the second order difference of the
trend-cycle, the first difference of the seasonality and the
constraint of the seasonal estimates to sum to zero over a
year. The order of the difference in (1) corresponds to the
default options of the computer program, but other orders
may be chosen by the user depending on the characteristics
of the series. s and z are constants to be chosen a priori by
the analysts and they are related to the degree of smoothness

of the trend-cycle and to the annual stability of the seasonal-
ity, respectively. The degree of flexibility of the seasonal
pattern is given by 1/s, where small values imply a more
flexible seasonality.

The main contribution of Akaike and Ishiguro to the class
of seasonal adjustment methods based on the minimization
of an objective function as (1) is the optimal estimation of
the scaling factor d which measures the degree of smooth-
ness of the signal; the trend-cycle plus the seasonality.

The idea of applying least squares techniques to time
series under the form of minimizing a linear combination of
two sums of squares was first suggested by Henderson
(1919) and -later developed by Whittaker (1923, 1924) and
Henderson (1924).

Henderson (1919) pointed out that in smoothing real data
there is always a compromise between how good the fit
should be and how smooth the fitted curve should be. The
lack of fit is measured by the sum of squares of the devia-
tions between observed and fitted values, and the lack of
smoothness, by the sum of squares of the third differences
of the smoothed curve. The Whittaker-Henderson method
was originally used for trend fitting with weights calculated
for the whole span of the series. The objective function to
be minimized was of the following form

k3, (Y, — T,)* + 3,(A%T,)? )]

The larger the k, the more importance was given to close- -
ness of fitting versus smoothing. Equation (2) was later
modified by Lesser (1961, 1963), Cholette (1978), and
Schlicht (1981) to incorporate seasonal smoothing and to
allow other differencing orders. '

Contrary to the authors’ claim that (p. 3): ¢“ . . .this ap-
proach leads to a regression technique with a very simple struc-
ture . . .,”” the BAYSEA method belongs to the same class of

Estela Bee Dagum is Chief of the Seasonal Adjustment
and Time Series Research Staff of Statistics Canada,
Ottawa, Canada KIA OT6.
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moving average techniques as the X-11 procedure. It differs
from X-11 mainly in that the estimation of the components is
made simuitaneously and the weights are calculated by least
squares. In X-11, the estimation is iterative and the weights are
based on summation formulas developed by actuaries. (For the
latter, see Macaulay 1931.)

The basic assumptions of the default option of BAYSEA
are that the time series would tend to follow a straight line
with a superimposed stable seasonality if unaffected by ran-
dom shocks. The random shocks are thought to be partly of
a permanent character and partly temporary. The permanent
disturbances become incorporated in the trend-cycle and the
seasonal estimates to change their level and/or direction,
while the temporary disturbances leave both systematic com-
ponents unaffected. The permanent disturbances are defined
as the second differences of successive values of the trend-
cycle plus the first seasonal differences of each month, the
temporary disturbances as deviations of the observations
from the fitted values. The amount of the random shock that
will be incorporated permanently as part of the trend and
seasonality depends on the value of d which is to be
estimated by the program. The higher d is, the smoother the
estimated trend-cycle and the seasonality.

The basic assumptions of BAYSEA are comparable with
those of X—11 from the viewpoint of the model-based sea-
sonal adjustment procedures. In fact, Cleveland and Tiao
(1976) proved that-the symmetric weights of the standard
option of X—11 can be well approximated from the decom-
position of an IMA model of the following form:

(1 —B)1 — BBy, = 6B A3)

and Tiao (1980) proved that the objective function of
BAYSEA leads to the following overall model for the series

(1 — $B)1 — B)(1 — B™)Y, = 6(B)a, @

where the value of ¢ is fixed.
The moving average weights, however, are not the same
for both methods. In BAYSEA, the weights change in func-

tion of the model chosen and the value of the parameter d.

On the other hand, in the X—11 method, the weights change
in function of the span of the seasonal and trend-cycle mov-
ing averages. The shorter the span of the moving average,
the more the irregular variation of the series is absorbed into
the trend-cycle and the seasonality.

Because the properties of moving average techniques are
best analysed by looking at the transfer functions of the
linear filters, the gain and phase shift functions of the
trend-cycle and the seasonal filters of the default options of
BAYSEA and X—11 have been calculated. For BAYSEA,
the gain and phase functions are shown for d = I, and
d = 4, values often encountered when applying the stand-
ard option to the real series but calculations have also been
done for d = 10, 12, 16 and 20. (d can take values from 1
to 20 in the BAYSEA program.)

Figure 1 shows that the gain of the central trend-cycle

SECTION 1

filter of BAYSEA for d = 4 suppresses more the short
cyclical fluctuations as compared to the corresponding gain
function of X—11 in figure 5. The gain of cycles of 36 to
18 months goes from 98 percent to 84 percent and, thus,
series strongly affected by this type of cyclical fluctuations
will be over-smoothed. On the other hand, the gain of the
central trend-cycle filter for d = 1, in figure 3, indicates
that a large variation of the irregular goes into the trend esti-
mates.

Figures 2 and 4 show that there is practically no differ-
ence between the gain functions of the corresponding central
seasonal filters of BAYSEA for d = 4 and d = 1, respec-
tively. On the other hand, the concurrent seasonal filters
are quite different, being the gain function of d =1 closer
to the central than that for d = 4. In both cases, however,
the central and concurrent seasonal filters of BAYSEA differ
significantly from those of X—11 shown in figure 6. The
BAYSEA central and concurrent seasonal filter pass more
noise variation as compared to X—11.

For other d values (not shown here) only the gain func-
tions of the trend-cycle filters are affected, being more
insensitive to short cycles as d increases. For d = 20, only
75 percent of the gain of the 36-month cycle is passed.

The phase shifts calculated for the concurrent filters are
shown in table 1 for those values greater than 1 month at
the frequencies where the gain is not close to zero. The
results show that the phase shifts of the BAYSEA con-
current seasonal filters are larger than those of X—11, par-
ticularly, at the very important frequencies around the fun-
damental seasonal frequency.

Table 1. PHASE SHIFTS INTRODUCED BY THE
CONCURRENT SEASONAL FILTERS OF THE
X—11 AND BAYSEA METHODS

X—11 method

BAYSEA method

Phase shift

Frequency Phase shift Frequency (in months)
(in degrees)  (in degrees)  (in degrees) d=4 d=1
26 -3.4 26 33 -36
28 1.7 28 20 -1.8
32 -1.5 32 -2.0 2.8

34 24 34 -2.0 0
38 -13 36 1.9 1.9

40 -1.6 38 2.3 0
42 -1.4 40 1.7 -13

4 -1.6 42 1.5 0
48 -1.6 44 1.5 -15
50 -1.5 46 1.3 -1.0
52 1.3 48 1.2 -1.6
62 -1.1 50 .1 -15
52 0 -1.5
54 0 1.5
56 0 14
64 0 1.3

0 = Phase shift smaller than 1 month.
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2. LIMITATIONS OF THE EMPIRICAL
COMPARISONS

The revisions of current seasonally adjusted values by
moving average procedures are due to (1) differences in the
properties of the linear filters applied to the same observa-
tion as it changes its time position and (2) the innovations
that enter into the serigs with new observations.

The authors compare the revisions of the concurrent

_estimated values of the trend-cycle, the seasonality and the
irregulars obtained with X-—11, X—11" ARIMA, and
BAYSEA for 14 series. The analysis is done without apply-
ing the option for replacement of outliers because (p. 14)
« _since these options will be cffective only when the
basic procedures work satisfactorily to give good initial esti-
mates of the irregular. component, we limited our attention
mainly to.the comparison of the procedures without these
options.”” It is apparent, however, that if the outliers are not
removed, the estimates of the trend-cycle and seasonality by
these two methods will be seriously distorted and their rank-
ing according to the size of the revision is thus misleading.
A further limitation that invalidates the conclusions of the
comparison is the fact that the authors apply different
BAYSEA models in function of the characteristics of the
series whereas the option of X—11 and X—11 ARIMA are
the same for all the series.

To measure the size of the revisions due to filter changes
(ignoring the treatment of outliers option as done by the
authors) it is more appropriate to calculate the mean abso-
Iute difference between the gain functions of the central and
concurrent filters of each method. The results given in table
2 show that the revisions of the X—11 concurrent trend-
cycle filter are smaller than those of BAYSEA for d =1
and d = 4. Concemning the concurrent seasonal filter, the
revisions of BAYSEA for d = 1 are the smallest. How-
ever, these revisions indicate the speed of convergence of
each concurrent filter towards its corresponding central
filter, and since the central filters of BAYSEA and X~—11

Table 2. MEAN ABSOLUTE DIFFERENCES OF THE GAIN
FUNCTIONS OF THE CONCURRENT TREND-
CYCLE AND SEASONAL FILTERS OF VARIOUS
METHODS WITH RESPECT TO THEIR
CORRESPONDING CENTRAL FILTERS

M.A.D. M.AD
(concurrent (concurrent

Method trend-cycle filter)  seasonal filter)
Census X—11
(default options) 314 15.49
BAYSEA
(default options, d=4) 35.11 18.95
BAYSEA
(default options, d=1) 45.42 12.44

SECTION 1

are significantly different, the comparison of these methods
from this viewpoint has no meaning at all.

The filter revisions of X—11 ARIMA are not given here
because they change in function of the ARIMA extrapola-
tion model and its parameter values. Dagum (1981) shows,
however, that for the three built-in models of the program
and various sets of parameter values, the revisions are
around 30 percent to 50 percent smaller than those of X—11
and, a fortiori, those of BAYSEA.

Looking at figures 2, 4, and 6, it is clear that the troughs
of the gain functions of the X—11 central seasonal filter are
closer to zero as compared to those of BAYSEA which
passes too much poise. If the revisions are taken with re-
spect to the X—11 central seasonal filter, the results given in
table 3 show that the revisions of the BAYSEA concurrent
seasonal filters are now much larger than those of X—11 in
both cases.

Table 3. MEAN ABSOLUTE DIFFERENCES OF THE GAIN
FUNCTIONS OF THE CONCURRENT SEASONAL
FILTERS OF BAYSEA AND X—11 WITH RESPECT
TO THE CENTRAL SEASONAL FILTER OF X—11

M.A.D.

(concurrent
Method seasonal filter)
Census X—11
(default options) 15.49
BAYSEA
(default options, d=4) 29.65
BAYSEA
(default options, d=1) 19.25

The main conclusions we can draw from this discussion is
that the comparison of revisions of seasonal adjustment
methods is useless if the methods have very dissimilar cen-
tral filters. We must first decide on which is the optimal
central filter according to some well-defined criteria.

3. OPERATIONAL STATE OF THE BAYSEA
PROGRAM

Seasonal adjustment methods used by government statisti-
cal agencies must fulfill, besides well-accepted statistical
criteria, other operational requirements as ease of interpreta-
tion and low operating costs.

Concerning the first operatiopal condition, it is difficult to
decide when the BAYSEA model chosen is, in fact, the best
for the series in question. In our experimentation, we used
the default options to start, and if no messages were printed
by the program indicating that d was reaching its minimum,
the model was considered .adequate. However, the authors
suggest to choose the model that gives the smallest ABIC
which means that several “‘order,”” ‘‘sorder,”” and ‘‘rigid”’
must be tried before making a decision. Table 4 shows the
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ABIC and d values for the agricultural employment of males
20 years old and over for various models.

Table 4. ABIC AND 4 VALUES FOR AGRICULTURAL
EMPLOYMENT OF MALES 20 YEARS OLD AND

OLDER

BAYSEA model ABIC d

2,2,1.0 386,783 42

2,1, 1.0 387,966 2.5

1, 1, 1.0) 374,096 1.49
1,1,.5) 375,141 1.49

The authors have chosen the (1, 1, 1.0) model which
corresponds to the smallest ABIC, but the difference with
that of the (1, 1, .5) model is so negligible that any user
will doubt on which is to be preferred. These two models,
however, imply different behaviour of the seasonal com-
ponent being more stochastic for the second model than for
the first. The same would happen if one would have to
decide between the (2, 1, 1.0) and (2, 2, 1.0) models.
Furthermore, when we experimented with the (1, 1, 1.0)
model, the program printed that a higher order and/or sorder
must be tried, but when we did so, the estimated ABIC’s as
shown in table 4 were also slightly higher.
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COMMENTS ON ‘“COMPARATIVE STUDY OF THE X—11 AND BAYSEA
PROCEDURES OF SEASONAL ADJUSTMENT”’ BY H. AKAIKE AND
M. ISHIGURO.

David F. Findley
- U.S. Bureau of the Census

The BAYSEA seasonal adjustment procedure (Akaike
1980) uses an estimated expected log maximum likelihood
procedure to select the best model from among several classes
of simple transformed-Gaussian smoothing models for a given
seasonal time series. Akaike and others have provided a sub-
stantial amount of evidence that such procedures can be effec-
tive in a variety of statistical contexts (see Akaike 1977 for a
number of examples) when the models being considered are
reasonable ones for the data. The good results he and Ishiguro
report in the paper under discussion suggest that their seasonal
models are adequate for the adjustment of many seasonal
economic time - series. Our comments will report results
related to some issues not directly addressed by their study:
(1) The comparative accuracy of the BAYSEA and X~11
adjustments on some synthetic seasonal time series, (2) the
seasonal adjustment by BAYSEA of some short series, (3) its
performance in selecting pre-adjustment transformations of
the data, (4) BAYSEA’s relationship to ARIMA model-based
optimal smoothing procedures for seasonal adjustment. We
are indebted to George Tiao for kindly permitting us to
append his study notes on this topic to these comments.

BAYSEA does well in the limited studies done by us to
investigate (1)—(3). Further evaluation work will be required
to reach firmer conclusions. Our experience suggests that the
use of synthetic series of the sort described in section 1 below
can and should play a significant role in such evaluations.

For all series adjusted by BAYSEA in this paper, the
adjustment which gave the smallest among three values of
AVABIC was used: These values of AVABIC were obtained
with RIGID=1 by allowing (ORDER, SORDER) to take on
the values (1,1), (2,1) and (2,2). A more careful choice of
these parameters could be expected to yield further improve-
ments.

The measure of smoothness described by the average abso-
lute percentage change (AAPC) for months that are a fixed lag
apart is one of the criteria used to evaluate the effectiveness of
a seasonal adjustment. For a series x;, . .., xy of length N
and for a given lag, , the lag k version of this criterion is cal-
culated by means of

N
E lxt = Xk l/ |x,_k I

1=k +1

These quantities appear in table F.2 of the X—11 program out-
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put. It is considered desirable that such numbers be smaller
for the adjusted series than for the unadjusted series and, often
but not always, the smoother of two adjustments is the better
one. We shall use this criterion for comparison purposes.

1. ACCURACY OF THE SEASONAL ADJUSTMENTS
FOR SOME SYNTHESIZED SERIES

In the report by Hillmer and Bell (1980), seasonal adjust-
ments for 76 series were obtained by an ARIMA model-based
signal extraction procedure and were compared with the.
default-option adjustments obtained from X—11. Often, both
procedures produce quite similar seasonals. This is the case
for the series 503WL and 518WL, which are identified in
table 1.1. The seasonals from both methods for these series
are depicted in figures 1.1 and 1.2. It seems reasonable, there-
fore, to accept these numbers as seasonals. The trend obtained
from the ARIMA model-based adjustment of a third series,
TI506 (table 1.1 and figure 1.3), the X—11 seasonals from
SO3WL and 518WL, and two ‘‘irregular’” series were com-
bined in various ways to form a set of synthetic series to be
used for comparing the accuracy of the adjustments obtained
by BAYSEA and by X—11. The correct seasonal adjustment
is defined in each case to be the trend times the irregular.
Denoting this correctly adjusted series by x; ..., xy and
the estimates obtained from one of the methods by
Xq, ..., Xy, the relative accuracy of the estimates was
assessed by means of two measures, RRMSQD (relative root
mean squared deviation) and RMAD (relative mean absolute

" deviation), defined as follows:

N
RRMSQD = [N 1Y (x, — £)Yx2"?
t=1

N
RMAD =N713 |x, =% |/ |x |
t=1

The components used to synthesize the series are described
in table 1.2. The numerical values of 7, §; and §, are given in
table 1.3. The descriptions in terms of components of the syn-
thesized series, along with the values of the accuracy meas-
ures associated with the default-option X—11 and BAYSEA
seasonal adjustments, are presented in table 1.4.
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Figure 1.1 X~—11 (solid) AND ARIMA MODEL-BASED (dashed) SEASONALS
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Figure 1.2 X—11 (solid) AND ARIMA MODEL-BASED (dashed) SEASONALS
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Figure 1.3 TREND T FROM T1506 Table 1.4 RELATIVE ERROR

5,000 FOR X—11 and BAYSEA
//
4,500 - 7 l RRMSQD (RMAD)
5 /"/ X-11 BAYSEA
4,000 ~ /
7 T 8§, .009 (.007) 006 (.004)
N\ TS, .009 (.007) 007 (.006)
33007 - ~ TS8-I .084 (.069) .051 (.042)
T S I 050 (.039) 028 (023)
3,000 - TS8-I .081 (.068) .052 (.044)
TSI 028 (.024) 027 (.023)
2,500 +
20007 Table 1.5 AVERAGE ABSOLUTE PERCENT
CHANGES FORT - S, - I,
S 1‘3 2 3; R 7I3 s:s 9I7 xég 1£1 = Lag Original X—11 BAYSEA
1 11.43 4.12 3.64
Table 1.1 IDENTIFICATION OF SERIES USED 2 17.22 7.31 6.82
3 19.00 9.81 9.42
TI506 Wholesale inventories—electrical goods 4 19.90 11.26 11.12
503WL Wholesale sales—lumber and other building materials 5 19.77 12.39 12.27
518WL Wholesale sales—beer, wine, and distilled acloholic 6 20.00 12.86 12.76
beverages 7 21.27 12.93 12.93
8 21.97 13.27 13.29
9 21.68 13.58 13.65
10 21.61 14.25 14.19
Table 1.2 IDENTIFICATION OF COMPONENTS 11 20.05 15.03 14.90
USED TO SYNTHESIZE SERIES 12 16.11 16.11 15.83
T ARIMA model-based trend from TIS06
S X—11 seasonal from SO3WL
S» X~—11 seasonal from 518WL _
I Iy:logly, ~iid N(0,0.02) The effect of the two different kinds of irregulars, edited-

: - - 6 : ) : )
I Iy log Iz, = — .66B)log [, lognormal white noise and an edited-lognormal sixth-order

moving average process, are illustrated in figures 1.4 and 1.5.
The editing was done to remove values larger than 1.5 stand-
ard deviations in magnitude from the associated pseudo-
Gaussian series. Without editing, irregulars so obtained had
implausible looking ‘outliers.”” (This suggests the possibility
that the distributions of many economic time series have
“‘thinner”’ tails than the lognormal.)

Graphs comparing the estimated and correct seasonally
adjusted values for two of the series are given in figures
1.6—1.9. Since the statistics assessing accuracy give similar

Table 1.3 TREND AND SEASONALS: T, §,, S,

1610 1649 . 1685 1685 1660 1652 1669 1680 1685 1698 1714 1737
1767 1787 1805 1822 1818 1805 1803 1817 1835 1845 1844 1841
1861 1885  J906 1945 1988 2016 2025 2039 2069 2080 2098 2121
2140 2137 2126 2128 2155 2182 2196 2225 2279 2324 2336 2345
2369 2361 2328 2346 2388 2405 2417 2445 2487 2516 2526 2534
T 2555 2582 2599 2614 2637 2670 2690 2696 2738 2782 2783 2786
2808 2836 2867 2908 298} 3067 3108 3104 3113 3176 3254 3302
3333 3373 3390 3415 3469 3545 3619 3649 3669 3702 3733 3757
3763 3738 3672 3585 3525 3509 3511 3496 3463 3464 3497 3512
3513 3527 3568 3633 3714 3785 3817 3840 3871 3907 3950 3979
3999 4036 4097 4194 4284 4332 4395 4500 4549 4547 4608 4691

B BTl IBT 1S ImE et I3 77 19 %3 s results for X—11 and BAYSEA with the series 7' - S, - I,
ol Sl W e B e e Sel D e e the AAPC values for both adjustments of this series are ‘also

CEERREEEEEE S el .
81 816 987 1032 1088 1110 1066 1129 1069 1087 986 875 Table 1.4 shows that even when BAYSEAS choice of
gzz %ig §(§) ﬁg ig«gz iigé %g i%é igéz i?%é §§§ i models has been restricted to three classes, it is able to better
80.2 811 94 1004

82 remove standard-option X—11 seasonals from these series
than is Standard-option X—11. These seasonals are rather

78.6 821 96.2 92.5 1056 1082 1032 107.6 1008 1054 1046 123.7 .

B9 B9 2 20 187 1ea 10 1043 s iea s e stable, however, and an experienced user of X—11 who knew

B N W %3 18 101 107 15 By loe 4o ims this would probably use the nonstandard 3 X 9 filter option,
S: D8 NS T3 UR 16 %3 133 e ®7 1m5 s iBs which does give superior performance with these series. We

25 089 I3 %0 M I3 %3 s »s lme-is s have not yet compared finely tuned adjustments by X—11 and

2%% %i Ezé §§ e e R el BAYSEA, since we lack the required experience With

BAYSEA.
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Figure 1.4 T X §, (solid) COMPARED WITH T X S, X I (dashed)
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Figure 1.5 T X §; (solid) COMPARED WITH T X'S; X I, (dashed)
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Figure 1.6 T X I (solid) COMPARED WITH THE X-11 ADJUSTMENT OFT X S, X I (dashed)
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Figure 1.7 T X I, (solid) COMPARED WITH THE BAYSEA ADJUSTMENT OF T X S, X I, (dashed)
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Figure 1.8 T X I, (solid) COMPARED WITH THE X—11 ADJUSTMENT OF T X §, X I; (dashed)
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Figure 1.9 T X I, (solid) COMPARED WITH TH_E BAYSEA ADJUSTMENT OF T X S, X I (dashed)
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2. ADJUSTMENT OF SHORT SERIES

Akaike’s and Ishiguro’s successful use of overlapping 4-
year spans of data to accomplish adjustments by BAYSEA
suggests that BAYSEA might be able to adequately adjust
short time series. (When enough data are available, BAYSEA
uses 7 years of data to backcast starting values for the trend
and seasonal compenents. and thereafter uses 4-year spans.)
Five confidential defense unfilled orders series collected by
the Census Bureau were strongly affected by the change in the
beginning and ending of dates of the Federal Government’s
fiscal year, which occurred in 1976. Data for 51 months were
available for these series, starting with October of 1976 when
the first of the new fiscal years began. BAYSEA adjustments
were made for all five of these series. None of the series was
strongly seasonal. Three were thought to have negligible
seasonality. For these three, BAYSEA produced seasonal fac-
tors very close to 1.0, and the average absolute percentage
changes at most lags were higher for the adjusted series than
for the unadjusted series. For the other two, some smoothing
occurred and it was felt by subject-area experts that the adjust-
ment was effective. Table 2.1 gives the AAPC values for the
most seasonal of these two series, for its X—11 adjustment,
and for its adjustment by BAYSEA. (The Census Bureau does
not recommend the use of X—11 with such short series.)

Table 2.1 AVERAGE ABSOLUTE PERCENT
CHANGES FOR A 51-MONTH,
MODERATELY SEASONAL SERIES

Lag - Original X-11 BAYSEA
1 331 2.87 2.38
2 5.18 422 3.75
3 6.78 5.44 5.11
4 8.08 6.73 6.42
5 8.87 7.96 7.62
6 9.64 9.25 8.66
7 10.19 9.89 9.69
8 11.42 10.96 10.76
9 12.48 11.98 11.76
10 13.23 12.89 12.60
11 13.93 13.82 13.61
12 14.66 14.66 14.56

3. TRANSFORMATIONS OF THE DATA

BAYSEA was applied to two Census Bureau series for
which some evidence exists that a multiplicative (or log-
additive) seasonal model is inappropriate. For the construction
statistics series CON-BPNE1, which describes the number of
building permits issued per month in the Northeast for single-
family houses (figure 3.1) the value of AVABIC for an addi-
tive model was 1895 as contrasted with 1909 for the log-
additive model. Thus, BAYSEA prefers the additive model
for this series over the multiplicative one, which is a decision
supported by visual and by some subject-matter considera-
tions.

The AAPC values are given for the original data of CON-

SECTION 1

BPNEI, its additively adjusted series and its log-additive
adjusted series (by BAYSEA in both cases) in table 3.1
below.

Table 3.1 AVERAGE ABSOLUTE PERCENT
CHANGES FOR CON-BPNE1: 1/1969-3/1980

Log-
Lag Original Additive additive
1 22.76 5.30 5.79
2 40.62 7.39 7.87
3 50.78 8.73 9.49
4 55.34 10.38 11.20
5 56.84 11.35 12.37
6 56.28 11.35 14.20
7 55.02 13.98 15.30
8 52.46 15.36 16.98
9 47.40 16.44 17.87
10 39.93 17.69 19.01
11 28.92 18.61 19.90
12 21.71 19.74 21.02

The other series for which we considered various transfor-
mations was retail hardware sales. Denoting this series by y;,
we considered additive decompositions of y;, y; 2 and log ; -
BAYSEA (easily modified to consider such power transfor-
mations) preferred the additive decomposition of y, 2, as did
an ARIMA model-based likelihood analysis performed by
William Bell, which suggested the use of this transformation.
The AAPC smoothness criterion favored the additive decom-
position adjustments obtained from y,* and log y, over that
from y,, but did not indicate a clear distinction between the
adjustments obtained via y,?* and log y,. :

4. CONNECTIONS WITH ARIMA MODEL-BASED
SEASONAL ADJUSTMENT

Suppose a trend-seasonal-irregular decomposition into
uncorrelated components of the seasonal time series y, is
given by

=T +t5 +1 4.1)
With B denoting the backshift operator, let us make the

additional assumption that 7, and S, satisfy the difference
equations

drBIT, = U, 42)

ds(B)S, =V, (4.3)
where
érB) =(1 ~BY
and

bsB) =01 —aB)(L +B + ...+ Bl
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Figure 3.1 CON-BPNE1
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and where U,, V, and I, are mutually uncorrelated white
noise series whose known variances are given by o2, o ?and
1, respectively.

Given initial values for 7, and S, and the covariances of
these -initial values, the Kalman smoother can be used to
obtain the least squares estimates of 7;, S; for1 < ¢ < N,
given y;, ..., yy (see Brotherton and Gersch 1981).
When o =1 and the initial covariances are set equal to zero,
the values of S, and 7, so obtained are those produced by
Akaike’s procedure for given values of d? and RIGID, with z
equal to zero, i.e., with the constraint expressions

S +8 + ...+ S )

dropped from his model (and with ORDER=2 and
SORDER=1). The same calculation with o equal to zero
yields the values obtained by dropping instead the constraint
expressions (S; — S;_12)%.- (Obvious modifications of (4.2)
and (4.3) in this procedure yield Akaike’s values for different
choices of ORDER and SORDER.)

With both seasonal constraint terms present, it is more dif-
ficult to exactly relate Akaike’s procedure to ARIMA models.
George Tiao has obtained a connection with the models
defined by (4.2) and (4.3), which we wish to discuss briefly.

For known values of o, o and o 2, the estimates of T,
and fw , of T, and S,, obtained by formally applying the least

70 71 72 73 74 75 76 77 78 79 80 81

squares signal extraction procedures from the theory of sta-
tionary time series (Koopmans 1974, p. 148) are solutions of

RB)T, = bsB HosB)a b, (4.4)

and

RB)S, = brB HdrB)ady, (4.5)

respectively, where the ‘‘shifted polynomial’’ R (B) is given
by

RB) = aldrBor(B) + 07bsB Nbs(B)
+ &rB NdrB)dsB s (B)
In a study note attached as an appendix to these comments,
George Tiao shows that the estimates 7, and S, of 7, and S,
obtained from Akaike’s procedure with ORDER=2 and

SORDER=1 must also satisfy (4.4) and (4.5), with a =
{2 +2)—((z% + 2> — 4)V?}2and

o2=5242%c¢2=0ad?
for values of 7 in the range

deg by - s <t < N —deg &7 - s (4.6
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where N denotes the length of the span of the observed series
y, being adjusted and deg ¢, - g denotes the degree of the
product polynomial ¢r(B)dbs(B). It follows that for these
¢ values, the differences

>

A

AT, = Tsx,l =Ty

-must satisfy

-

R®B) AT, =0 4.7
and similarly for AS, = SAW —Sa

These conditions are not terribly restrictive: The solutions

-of (4.7) need not converge to zero as ¢ becomes large and,
when they do converge to zero, the geometric rate of conver-
gence can be slow. (See the comments regarding the roots of
R (B) given below.) Further, when N = 48, as Akaike recom-
mends, and when deg &, - ¢g = 14, as it is in this example,
the 28th-order difference equation (4.7) is required to hold for
only twenty ¢ values, 14 < ¢t < 34.

Along with these qualifying remarks, it should also be men-
tioned, however, that the equations (4.2) and (4.3) do
correctly suggest two important features of the trends and sea-
sonals produced by Akaike’s method, namely, the sensitivity
to starting values mentioned by Akaike (1980) and the kind of
forecasts of 7, and S, obtained when, as Akaike mentions as a
possibility, the y, corresponding to the ¢ values for which fore-
casts are desired are declared to be missing values. In several
examples we looked at, the T, forecasts looked like straight-
line extrapolations from the last few 7, in the range of obser-
vation, and the S, forecasts were very close to the periodic
extension of the last twelve S; values associated with the
observed y, .

It is easy to generalize Tiao’s argument to cover other
values of ORDER and SORDER. When ORDER=1, one
obtains that ¢7(B) = 1—B. When SORDER=2, our attempts
to construct ¢bg(B ) (which has degree 24) by finding the roots
of bs(B _I)d) s (B) met with numerical difficulties. The results
obtained suggest that ¢g(B) has double roots very close to
exp(= ikw/6), k=2,3,4,5, along with single roots close to — 1
and exp(= 7/6), and no other roots very close to the unit cir-
cle. In all of the cases we considered, for SORDER=1,2, all
but a few of the roots of R (B) were close to (but not on) the
unit circle, the closest roots being near to exp(zikw/6),
k=0,1,2,3,4,5,6.

For example, with ORDER=2, SORDER=1, and d?=19,
the roots of R (B) are the seven numbers given below, along
with their reciprocals, complex conjugates, and conjugate
reciprocals.

Table 4.1 BASIC ROOTS re’® of R (B)

r 71 75 .98 .98 .98 .98 .99
2%w/6 18.7 % 24 3 4 6 12

SECTION 1 -
5. CONCLUDING REMARKS

The number of examples we have considered is too small to
support firm conclusions. Coupled with the results of Akaike
(1980) and the present paper by Akaike and Ishiguro, how-
ever, our results would seem to offer additional evidence that
BAYSEA may find a place among the handful of seasonal
adjustment methods which enjoy or can expect to enjoy wide
usage. Given the ease with which calendar-effect variables,
intervention variables, and other special trend, or seasonal or
irregular compensatory adjustments can be incorporated into
BAYSEA, this would be welcome.

I would like to thank Ted Holden for computer assistance in
the preparation of these comments.
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APPENDIX

STUDY NOTES BY G. C. TIAO ON AKAIKE’S
SEASONAL ADJUSTMENT PROCEDURE

Here we shall use ¢ for i and the backshift operator B such
that By, = y,_;. Thus, lety, = T, + S, + I, where T}, S, and
I, are unobservable components. We show the relationships
between Akaike’s (1980) Bayesian minimization procedure

(yt - Tr - 51)2

M=

f ==

1

~
it

+ dz{sz(Tz - 2T, + Tt~2)2 + (S =S —12)2
+z%S, + ...+ S 0% (A1)

and the model-based procedures advocated in papers by Box,
Cleveland, Hillmer, Pierce and Tiao.
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From (A.1),

Lof o -
T5r = =T = 8)

+ d%H6T, — AT, 1y + T,—)

+ T+ T, 2} =0
-;-gsit = ~T, -5

+ d¥(@2S; — Si-i2 — Si+12)

+ 22128, + 11(S;4; + S;-1)

+ 100,00 + Sp) + . ..

+ Spenn + 8-} =0

Thus, we have that

or, =Y -5 )
QS =Y, - T, (A2)
where
Q= +d2$2(1 - BY(1 —~F)
0, =1+d4(1 —B% + 22 UB)UEF)]

+ d2UBIE)NZ2 + (1 — B — F)]
+ cAUBUF)X1 — aB)(1 — aF)

o hme ek e e

andwhere F =B L, U®B)=1+B +...+BY az’=
(1 — a)? and ¢ = a7'd2. It follows that for large N and ¢
not close to the end points

T, = (@2, — D@, — DY, (A3)
§; = @102 = D7'Q, ~ DY,
Now, let us suppose that T, and S, follow the ARMA model

&rBIT; = 67:(B)U,
bs(B)S; = 05(B)V; (A4
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where {U,}, {V,} and {I;} are uncorrelated white noise
processes with variances o2 o2and 1, respectively. Then,
from signal extraction theory, the best estimates of 7, and S,
are

1, = R71$s(B)bs(F)0r(B)0r(F)o 2,
S, = R7'orB)dr(F0s(B)0s(F oy,  (AS)
where
R = 0 7bs(B)ds(F)Br(B)Or(F)
+ 0 2brB)br(F)0s(B)0s(F)
+ br(B )b (F )bs (B )ds(F)
By comparing (A.3) with (A.5), we can simply take ¢g(B) =
(1= aB)UB), &r(B) = (1 —B), 0;(B) = 65(B) = 1,
o2 =c2and o2 = s 2d 2. That s, the models for 7, and S,
are, respectively,
(1 —BYT, =U,,
(1—aB)1+B +...4+4BW)S, =V,,0} =c2

cru2 = 572472

(A.6)

To partially check the appropriateness of (A.6) in practice,
note that models in (A.6) imply that the overall modet for ¥,
is

(1 —aB)1 —B)1 —BY®Y, =0B)a, (A7)

where o2 6(B) 0(F) = R. Thus, we would argue that the
minimization procedure in (A.1) would be consistent with
information from the data if the overall model of Y, is of the
form (A.7). Note from (A.2) that (1 + o®a™'= (z2 + 2) s0
that from Akaike’s paper, the value of a is fixed. If, on the
other hand, the model for ¥, is vastly different from (A.7),
then the use of (A.1) would be thrown in doubt.
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COMMENTS ON ‘“COMPARATIVE STUDY OF THE X—11 AND BAYSEA
PROCEDURES OF SEASONAL ADJUSTMENT”’ BY HIROTUGU AKAIKE AND
MAKIO ISHIGURO

Svend Hylleberg

University of Aarhus, Denmark

In this interesting paper, the Census Bureau X-—11
method is compared with the BAYSEA seasonal adjustment
method developed by Akaike. The BAYSEA procedure
assumes that the observed series ¥; (or the log of Y;) can be
decomposed into three additive unobserved components: The
trend-cycle component TC,, the seasonal component S;, and
the irregular component I,. When estimating the three com-
ponents the objective function applied is

min{Y, — TC, — §,)?
T+ dASHATC,)? + (ADS)?

]
0 zz(i Sl
j=0

where s, z, 8, and \ are constants chosen by the user. A; is
the difference operator (1 — L), L being the lag operator,
while a grid search is used to estimate d. The rationale
behind the term (APTC,) is that the trend-cycle component
ought -to be smooth, while the rationale behind the term
(A{‘ZS,)lis that the seasonal component should be stable. The
term (,S,—;) is included in order to keep the 12-month
j=0
sum for the seasonal component close to zero.

Obviously, several reservations can be made against the
arbitrary criteria that the trend-cycle component should be
smooth and the seasonal component stable. (See Hylleberg,
1981, ch 2.) But when applying the BAYSEA procedure, it
becomes important to realize that one of the main objectives
of deseasonalizing single economic time series is to promote
the prediction of turning points. As a consequence, values
of 3 less than or equal to 2 should be avoided as they imply
biasing the estimated trend-cycle component towards being -
constant (8 = 1) or linear (8 = 2).

Nonetheless, in applying the BAYSEA procedure to
actual economic time series, Akaike and Ishiguro search
over values of d equal to 1 and 2 only.

Of course, these biases will be small if sufficiently low
values of s are applied, but it seems preferable to apply
higher degree smoothness priors, i.e., higher values of & and
correspondingly higher values of s.

REFERENCES
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RESPONSE TO DISCUSSANTS

H. Akaike and M. Ishiguro
Institute of Statistical Mathematics, Tokyo, Japan

We are grateful that the discussants took up several impor-
tant points that we did not discuss in our paper. Before
answering the points, we would like to emphasize the conven-
tional character of the BAYSEA procedure. We consider it to
be a simple flexible rule that will allow a reasonable measure-
ment of the trend and seasonal components. Thus, we do not
think it sufficiently useful for forecasting. For that purpose,
more detailed analysis and modeling of the behavior of these
components are necessary. The output of BAYSEA will pro-
vide a starting point for this type of research.

As to the first point of Dr. Dagum, the frequency response
analysis of BAYSEA, we must emphasize the data-adaptive
nature of BAYSEA. The frequency response analysis is a pro-
cedure developed mainly for the analysis of a constant linear
system. In the BAYSEA procedure, not only the parameter d
but also other parameters, such as ORDER, SORDER and
RIGID, are chosen adaptively. Even when these latter param-
eters are fixed, the adaptive choice of d gives the procedure
an essentially nonlinear characteristic. For the analysis of such
a system, it is more informative to observe the responses of
the system under typical operating conditions, as is done in
the test of audio amplifiers. Figures 1 and 2 show the
responses of X—11 and BAYSEA (2, 1, 1.0), without extreme
value corrections, to the square wave input. The generation
of the spurious seasonal component by X—11 is much more
significant than that of BAYSEA. Figures 3 and 4 show simi-
lar results obtained by X~11 and BAYSEA (1, 1, 1.0) for a
white noise input. The spurious movement of the trend com-
ponent generated by X—11 clearly demonstrates the undesir-
ably high sensitivity of the trend-cycle filter to the irregular
component. These simple examples amply explain the reason
why we restricted our analysis to the empirical comparison of
the 14 sets of data provided by the Bureau of the Census.
These data are full of complexities that cannot be easily simu-
lated by simple artificial inputs. It is common knowledge that
the frequency response characteristic is only supplementary
information in testing an audio equipment of high quality.
Here, judgements by experts are still playing a dominant role,
ie.,- we are still in the process of searching for a decisive
characteristic in choosing-a system. Maybe this is an unending
process. We believe that the situation is much the same with
seasonal adjustment and we pay very much attention to the
opinions of experts in the area of practical application.

We are glad to see that Dr. Dagum is in agreement with us
and consider that the amount of revision itself is not a decisive
characteristic for the comparison of seasonal adjustment pro-
cedures. We believe that our numerical results have shown

that BAYSEA produced smaller revisions compared with
X~11, when the final outputs were similar. BAYSEA often
produced more reasonable trend estimates, as is shown by the
results of figures 6 and 7, without undue increase of the
amount of revision. At least, we can say that BAYSEA is a
procedure that produces results essentially different from
those by X—11, with respect to some characteristics that are
perhaps of practical importance.

Coming to the last point, the operational state of BAYSEA,
we must mention that the program made available to the dis-
cussants was a prototype designed for the ease of understand-
ing and modification of the procedure by the user. However,
even with this program, the CPU time to produce the result of
figure 1 by our computer was 18.66 seconds and included the
computation of covariance sequences and spectra of the com-
ponent series. The X—11 ARIMA took 4.76 seconds for the
same data, without covariance and spectrum computation.
We already have a faster version of BAYSEA.! By use of this
version, the CPU time for the adjustment of the same data was
4.57 seconds, with slightly reduced output of spectra. Thus,
we can see that the computational efficiency is not a main
problem. Further improvement of computational efficiency of
BAYSEA is not quite improbable. Due to the simplicity of
the structure, anyone who is interested in the procedure can
easily develop his or her own version of BAYSEA.

The printout of the necessity of trying different ORDER or
SORDER shows that the value of the parameter d is hitting
the boundary of its possible values and is usually very useful
in the search for an appropriate model. However, the final
decision should depend on ABIC’s, as described in our paper.

Dr. Findley supplemented our analysis by checking the per-
formance of BAYSEA with respect to the transformation of
data, adjustment of short series, and the analysis of syn-
thesized series. We are glad to see that his findings are con-
sistent with our experience. The comparison with X—11 based
on average absolute percentage changes will be of particular
interest to those who are familiar with the use of this statistic.
Certainly, we are pleased to see that in Dr. Findley’s experi-
ment the BAYSEA procedure produced results better than, or
at least equivalent to, those by X—11.

The analysis through time series modeling developed by
Professor George Tiao is very valuable. As we already men-
tioned, our procedure is very data adaptive and, in that sense,
responsive to some structural change of the generating

shiguro, M. 1981, ‘‘Computationally Efficient Implementation of a

Bayesian Seasonal Adjustment Procedure,” Research Memo. 24, March
1981, The Institute of Statistical Mathematics, Tokyo, Japan. |
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mechanism of the original series. As is noticed by Dr. Find-
ley, this characteristic may not be adequately described by
stationary time series modeling. Nevertheless, this type of
analysis might be helpful when our procedure encounters
some particular type of difficulty.

Dr. W. S. Cleveland’s suggestion of robustification of

SECTION 1

BAYSEA against outliers seems very natural and interesting.
The tentative procedure of outlier correction in the present
version of BAYSEA is based on a Bayesian modeling.
Although it works fairly well, it is extremely time consuming.
We hope to investigate the possibility of implementing a com-
putation by more efficient procedures of outlier correction.
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COMMENTS ON “COMPARATIVE STUDY OF THE X-11 AND BAYSEA
PROCEDURES OF SEASONAL ADJUSTMENT”’ BY H. AKAIKE
AND M. ISHIGURO

Adi Raveh

Akaike and Ishiguro formulated the decomposition of a
given time series into trend, seasonal, and irregular com-
ponents as a minimization problem. They assume the additive
structure ¥; = T; + §; + I; where ¥; denotes the observation
at time i and T;, S;, and I; denote the trend, seasonal and
irregular component, respectively.

They expect the two systematic components, trend and sea-
sonal, to have at least locally smooth behavior in linear terms
and a stable yearly pattern, respectively. This expectation is
represented by requiring that

[SXT; — 2Tiy + Ti)* + (S; — Si-12)
+Z%S; + S8 ..+ S

be small. The last term within the brackets is added to keep
the 12 months sum of the seasonal variations close to zero.
Here S and Z are properly chosen constants. The authors also
expect that the systematic part 7; + S; will not deviate signifi-
cantly from the original observation Y;. This suggests the
minimization of

;, -7 - S;F M

Consideration of the above two quantities leads to the
minimization of

W, = T; — S + diSHT; — 2T,y + T )
F S — S FZHS L+ Sion)] )

where d is a properly chosen constant. Estimates of the two
systematic components, 7; and S; can be obtained by minim-
izing (2) using the standard procedure of least squares. Of
course, the three parameters (weights) d%, S? and Z, must be
specified before the procedure becomes operational. This
problem is solved as a problem of statistical model selection
using AIC. The very same procedure was suggested recently
by Schlicht (1981). His method minimizes the equation (2) for
monthly series. His a, 8, and y play the same role as d3s?,
d?, and d’Z? in Akaike’s and Ishiguro’s paper.

Schlicht has derived a unique solution to the minimization
problem. He claims that the appropriate choice of parameter
values will depend on the shape of the time series, but he did
not show how to choose the desired values of the parameters.

Thus, if the seasonal pattern is nearly fixed over the whole
period of observation, a very high B (not o asis mistakenly
claimed by Schlicht) would be appropriate. High values of Y
are required to keep the seasonally adjusted data (SAD) in the
same scale as the original data. In other words, the sum of the
original series and the SAD for any 12 consecutive observa-
tions will be about the same. Procedures to check that the pat-
tern is constant and to choose the parameter values are not
given by Schlicht.

Both methods trade off among the four components of the
overall loss function by means of the three weight parameters.
Thus, for example, when B increases to infinity, the moving
seasonality becomes fixed. When B = 0, the moving
seasonality behaves like an irregular component with every
consecutive 12 values adding up to 12 approximately,
depending on the value of v.

Both procedures try to estimate as smooth a trend as possi-
ble in terms of local linearity. The part of the loss function
that relates to trend is based on squares of the second differ-
ences and is provided by minimizing

LN@) = 3,AT; - AT = 0 ©
i=3

where AT; = T; — T; . LIN(T) = 0 if and only if the trend
is perfectly linear. LIN (T') = O (relatively, close to zero), if
the trend is locally linear, namely, if there are very few turn-
ing points and between turning points the trend is linear.

Linearity conditions for the trend are: 7; — T;_; = T;_; —
Ty, foralli =3,...,N,or AT; = AT;_;, or A’T; = 0.
Another point of view which is slightly different is that the
trend will be as smooth as possible in terms of local monoton-
icity. The conditions for weak monotonicity are

T = Ti )T

or

—Tip) = O0foralli =3, ..., N

AT,AT; ;= 0

The author is on leave from Hebrew University,
Jerusalem, to Stanford University, Calif., and currently
is an ASA Junior Research Fellow at the Bureau of the
Census.
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or

ATAT,_, = |ATAT,_;| foralli =3, ..., N

Thus, smooth trend can be measured by a coefficient of
local monotonicity given in (4) below.

N
DAT; - AT
MONET) = py = = @)
D |AT; - AT, |

i=3

a = 1 if and only if the trend is perfectly weak monotone
with either positive or negative slope. If very few turning
points exist (relative to the length of the series) and between
them the trend is monotone then w, = 1, and we call it local
monotonicity. The least monotone trend would be obtained
for series that their slope change rapidly. Thus for the follow-
ing series: a,b,a,b, ..., bwherea # b, the coefficient py

In terms of monotonicity, a smooth trend is achieved as .y
is increased and thus max . is desired. To combine this loss
function with the overall loss function, let us consider the
minimization of the quantity:

W =T, = S;) + A |[AT,AT, -y — |ATAT, 4 |?
FBS; =S +CS; + ..+ S8 (&)

where A, B, C, P are properly chosen constants (usually P =
1 or 2 can be used). The solution can be obtained by numeri-
cal algorithms for minimization such as in Zangwill (1967). It
is obvious that LIN (T') = 0 yields MON (T') = 1, but not vice
versa. In other words, a trend can be very smooth in mono-
tone terms but at the same time may be far from being a linear

SECTION 1

one, as in figure 1, below. By adopting this minimization for-
mula, a smoother trend should be obtained in terms of local
monotonicity. By minimizing (2) for a discontinuous and
polytone (namely, local monotone) trend, one could obtain a
local linear trend as an estimate although such does not exist
for the data. In figure 2, original series and trend estimation
are exhibited for wholesale inventories of grocery stores in the
United States for January 1967 to July 1980. In 2a and 2b,
estimates of global monotone (nearly linear) trend and local
monotone (polytone of order 3) trend are obtained, respec-
tively. It seems that the estimation in 2b represents the intrin-
sic (hidden) local trend more accurately, especially around the
turning points.
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Figure 1. A LOCAL POLYTONICITY SERIES WHICH
IS NOT SMOOTH IN THE LOCAL LINEAR-
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Figure 2. WHOLESALE INVENTORIES OF GROCERY STORES: JANUARY 1967 TO JULY 1980
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2b. A local monotone trend (a polytone curve of order 3)
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REPLY TO DR. RAVEH’S COMMENT

H. Akaike and M. Ishiguro

We are grateful to Dr. Raveh for pointing out the distinc-
tion between the Schlicht’s constrained least squares and our
Bayesian approach. As was mentioned in Dr. Dagum’s discus-
sion, the constrained least squares approach has a long his-
tory. It is our use of ABIC, or the likelihood of the Bayesian
model, that made BAYSEA a viable alternative to the X—11
procedure.

The concept of local monotonicity is interesting. However,
the minimization of (5) will allow irregular variations of the
trend in monotone phases and only curb the behavior at turn-
ing points. This seems to be somewhat in contradiction to Dr.
Raveh’s final statement. It may also be mentioned that the
application of the Bayesian modeling to (5) may not be quite
feasible as a practical procedure.



